Image Processing and Computer Vision Introduction

Amartya Kundu Durjoy

Lecturer

CSE Department (UGV)

What is an image?

- We can think of an **image** as a function, f, from R^2 to R:
 - f(x, y) gives the **intensity** at position (x, y)
 - Realistically, we expect the image only to be defined over a rectangle, with a finite range:
 - $f: [a,b] \times [c,d] \rightarrow [0,1]$
 - 0 → black; 1 → white; in-between → gray

$$f(x,y) = \begin{bmatrix} r(x,y) \\ g(x,y) \\ b(x,y) \end{bmatrix}$$

Analog Image

- An image can be understood as a 2D light intensity function f(x,y) where:
 - x and y are spatial coordinates
 - The value of f at any point (x, y) is proportional to the brightness or gray value of the image at that point
- Cannot be stored as such on a digital computer.

Digital Image

Recall two ways of visualizing an image

Intensity pattern

2d array of numbers

We "see it" at this level

Computer works at this level

- A digitized image is one in which:
 - Spatial and grayscale values have been made discrete.
 - Intensities measured across a regularly spaced grid in x and y directions are sampled to
 - 8 bits (256 values) per point for black and white,
 - 3x8 bits per point for color images.
 - Stored as a 2D arrays of gray-level values. The array elements are called pixels and identified by their x, y coordinates.

Image Representation

- Discrete representation of images
 - we'll carve up image into a rectangular grid of pixels P[x,y]
 - each pixel p will store an intensity value in [0 1]
 - 0 \rightarrow black; 1 \rightarrow white; in-between \rightarrow gray
 - Image size $mxn \rightarrow (mn)$ pixels

Color Image

What is a Digital Image?

•A **digital image** is a representation of a two-dimensional image as a finite set of digital values, called picture elements or pixels

What is a Digital Image? (cont...)

- •Pixel values typically represent gray levels, colors, heights, opacities etc
- •Remember digitization implies that a digital image is an approximation of a real scene

What is a Digital Image? (cont...)

- Common image formats include:
- 1 sample per point (B&W or Grayscale)
- 3 samples per point (Red, Green, and Blue)
- 4 samples per point (Red, Green, Blue, and "Alpha", a.k.a. Opacity)

• For most of this course we will focus on grey-scale images

Images as Surfaces

What is Digital Image Processing?

- Digital image processing focuses on two major tasks
 - Improvement of pictorial information for human interpretation
 - Processing of image data for storage, transmission and representation for autonomous machine perception
- Some argument about where image processing ends and fields such as image analysis and computer vision start

Image Processing

Hubble telescope – image restoration example:

- A defective mirror made many of Hubble's images useless.
- Image restoration techniques were used to improve image quality before fixing the problem.

Wide Field Planetary Camera 1

Wide Field Planetary Camera 2

Image Processing

Image Compression

Computer Vision

- Make computers understand images and video.
 - Computing properties of the 3D world from visual data (measurement)
 - Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities. *(perception and interpretation)*

What kind of scene?

Where are the cars?

How far is the building?

• •

What is Computer Vision?

- Computer vision is the science and technology of machines that see.
- Concerned with the theory for building artificial systems that obtain information from images.
- The image data can take **many forms**, such as a **video sequence**, **depth images**, views from multiple cameras, or multidimensional data from a **medical scanner**

Examples

4. Satellite image

5. IR image

- 1 and 3. http://en.wikipedia.org
 2. http://radiology.rsna.org
- 4. http://emap-int.com
- 5. http://www.imaging1.com

DIP to **CV**

•The continuum from image processing to computer vision can be broken up into low-, mid- and high-level processes

In this course we will stop here

Image Processing vs Computer Vision

Low Level

Image Processing

Acquisition, representation, compression, transmission

image enhancement

edge/feature extraction

Pattern matching

Computer Vision

image "understanding" (Recognition, 3D)

High Level

Image Processing → Image Analysis

Low level
Image acquisition
Image enhancement
Image compression
Image segmentation
Object recognition
Scene understanding
High level
Semantics

Image processing

Image analysis (Computer vision, Pattern recognition, etc.)

Why Computer Vision is Hard?

Vision is really hard

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

a b c

FIGURE 2.7

Illustration of the Mach band effect. Perceived intensity is not a simple function of actual intensity.

Perceived Intensity is Not a Simple Function of the Actual Intensity – Simultaneous Contrast

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

FIGURE 2.9 Some well-known optical illusions.

More Optical Illusions

http://www.123opticalillusions.com/

http://brainden.com/optical-illusions.htm

Vision is Challenging

- Inverse problems
- Apriori-knowledge is required
- Complexity is extensive
- Non-local operations

Vision is really hard

Vision is really hard

Components of a computer vision system

Related disciplines

Vision and graphics

• Inverse problems: analysis and synthesis.

graphics

vision

What is computer vision? (2D->3D)

What is computer graphics? (3D->2D)

Computer Graphics

Projection, shading, lighting models **Output:** Image 3D Geometric Models **Synthetic** Camera

Why vision matters?

• Images and video are everywhere!

Personal photo albums

Surveillance and security

Medical and scientific images

Slide credit; L. Lazebnik

Image Processing and Computer Vision Applications

- Visual inspection/quality control
- Surveillance and security
- Autonomous vehicles
- Space applications
- Medical imaging
- Digital photography and 3D modeling
- Games and much more

Image Processing and Computer Vision Applications

Safety

Health

Security

Comfort

Fun

Access

- Automobile driver assistance
 - Lane departure warning
 - Adaptive cruise control
 - Obstacle warning
- Digital Photography
 - Image Enhancement
 - Compression
 - Color manipulation
 - Image editing
 - Digital cameras
- Sports analysis
 - sports refereeing and commentary
 - 3D visualization and tracking sports actions

MobilEye system

- Film and Video
 - Editing
 - Special effects
- Image Database
 - Content based image retrieval
 - visual search of products
 - Face recognition
- Industrial Automation and Inspection
 - vision-guided robotics
 - Inspection systems
- Medical and Biomedical
 - Surgical assistance
 - Sensor fusion
 - Vision based diagnosis
- Astronomy
 - Astronomical Image Enhancement
 - Chemical/Spectral Analysis

- Arial Photography
 - Image Enhancement
 - Missile Guidance
 - Geological Mapping
- Robotics
 - Autonomous Vehicles
- Security and Safety
 - Biometry verification (face, iris)
 - Surveillance (fences, swimming pools)
- Military
 - Tracking and localizing
 - Detection
 - Missile guidance
- Traffic and Road Monitoring
 - Traffic monitoring
 - Adaptive traffic lights

Cruise Missiles

Key Processes in Image Analysis

Image Acquisition

Image Enhancement

Image Restoration

Processing

Segmentation

Representation & Description

Object Recognition

Image Compression

CHALLENGES FOR VISION ALGORITHMS

viewpoint variation

Michelangelo 1475-1564

Illumination

Illumination

Scale

and small things from Apple. (Actual size)

Deformation

Occlusion

slide credit: Fei-Fei, Fergus & Torralba

Background Clutter

Background Clutter

Object intraclass variation

Local ambiguity

Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues
- Our job is to interpret the cues!

Bottom line

- Perception is an inherently ambiguous problem
 - Many different 3D scenes could have given rise to a particular 2D picture

- Possible solutions
 - Bring in more constraints (or more images)
 - Use prior knowledge about the structure of the world
- Need both exact measurements and statistical inference!

Some more Applications of IP and CV

Image Enhancement

Contrast stretching

Deblurring

Image Enhancement

Denoising

- Face detection
 - Almost all digital cameras now detect faces

Machine vision

Automated visual inspection

Face detection

Many new digital cameras now detect face

• Canon, Sony, Fuji, ...

Age recognition

Smile recognition

Smile detection?

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot® camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Face makeovers

Face recognition

Who is she?

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Face Recognition

http://www.face-rec.org/

Challenge: appearance changes

Gender Classification

- Useful for collecting demographic data but also boosting face recognition performance!
- Related applications: race classification, age classification.

<u>Key challenge</u>: choose features that encode gender information but not identity information!

Facial Expression Recognition

http://www.youtube.com/watch?v=M1WgnisIyPQ&feature=related

Login without a password...

Fingerprint scanners on many new laptops, other devices

Face recognition systems now beginning to appear more widely

http://www.sensiblevision.com/

Authentication Using Biometrics

Fingerprint Recognition

minutiae

Challenge: small overlapping area

input

matching

Object Recognition

Toshiba Tech IS-910T

2013

DataLogic LaneHawk LH4000

2012

Special effects: shape capture

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic Click here for interactive demo

Automatic Panorama Stitching

3D Reconstruction from internet photo collections

"Statue of Liberty"

"Half Dome, Yosemite"

"Colosseum, Rome"

3D model

see "Building Rome in a day" project at U. Washington

http://grail.cs.washington.edu/rome/

3D from thousands of images

Building Rome in a Day: Agarwal et al. 2009

Sports

Sportvision first down line
Nice explanation on www.howstuffworks.com

BMW 5 series

BMW night vision

Games and Assistive Technologies

Nintendo Wii has camera-based IR tracking built in. See <u>Lee's work at CMU</u> on clever tricks on using it to create a <u>multi-touch display!</u>

Kinect

Assistive technologies

Virtual Fitting

Interactive Games: Kinect

- Object Recognition: <u>http://www.youtube.com/watch?feature=iv&v=fQ59dXOo63o</u>
- Mario: http://www.youtube.com/watch?v=8CTJL5lUjHg
- 3D: http://www.youtube.com/watch?v=7QrnwoO1-8A
- Robot: http://www.youtube.com/watch?v=w8BmgtMKFbY

Vision in space

NASA'S Mars Exploration Rover Spirit captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "Computer Vision on Mars" by Matthies et al.

Vision in Space

NASA'S Mars Exploration Rover Spirit

- Vision systems used for several tasks
 - Obstacle detection
 - Position tracking
 - 3D terrain modeling

For more info, read "<u>Computer Vision on Mars</u>" by Matthies et al. International Journal of Computer Vision, 2007.

Crater Detection

Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover

http://www.robocup.org/

Medical imaging

3D imaging MRI, CT

Image guided surgery
Grimson et al., MIT

Image Operations

- Geometric Operations
- Point Operations
- Spatial Operations
- Global Operations (Freq. domain)
- Multi-Resolution Operations

Geometric Operations

Point Operations

Geometric and Point Operations

Spatial Operations

Global Operations

Global Operations

Multi-Resolution

Low resolution

Image Digitization

- Sampling is measuring the value of an image at a finite number of points (i.e., CCD array)
- Quantization is the representation of the measured value at the sampled point by an integer (i.e., frame grabber)

Image Digitization (cont'd)

Physical Image Digital Image

a b

 $\label{eq:FIGURE 2.17} \textbf{FIGURE 2.17} \ \ (a) \ \ Continuos \ image \ projected \ onto \ a \ sensor \ array. \ (b) \ \ Result \ of \ image \ sampling \ and \ quantization.$

Effect of Image Sampling

original image

sub-sampled by a factor of 2

Note: images have been resized for comparison purposes

sub-sampled by a factor of 4 sub-sampled by a factor of 8

Effect of Image Quantization

256 gray levels (8 bits/pixel) 32 gray levels (5 bits/pixel) 16 gray levels (4 bits/pixel)

8 gray levels (3 bits/pixel)

4 gray levels (2 bits/pixel)

2 gray levels (1 bit/pixel)

What skills you need?

- Strong programming skills (i.e., C, C++, Python, Matlab)
- Good knowledge of Data Structures and Algorithms
- Good skills in analyzing algorithm performance (i.e., time and memory requirements).
- Strong background in mathematics, especially in:
 - Linear Algebra
 - Probabilities and Statistics
 - Numerical Analysis
 - Geometry
 - Calculus

Textbook

□ Digital Image Processing

Rafael C. Gonzalez & Richard E. Woods,

Digital Image Processing

S Esakkirajan T Veerakumar, S Jayaraman

https://books.google.co.in/books?id=JeDGn6Wmf1kC&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Digital Image Processing An Algorithmic Introduction Using Java

Wilhelm Burger, Mark J. Burge

Secondary Text

Concise Computer Vision

Reinhard Klette

 Fundamentals of Digital Image Processing Chris Solomon, Toby Breckon

Computer Vision: Algorithms and Applications

© 2010 Richard Szeliski, Microsoft Research

http://szeliski.org/Book/